Bjorn’s Corner: The challenges of Hydrogen. Part 6. Tank placement.

August 28, 2020, ©. Leeham News: In our series on Hydrogen as an energy store for airliners we look at the challenge of placing the hydrogen tanks efficiently.

Different from carbon fuels, liquid hydrogen needs specially shaped and bulky tanks. It can’t be stored in the wingbox as today’s Jet-A1.

Figure 1. The Tu-155 Hydrogen research aircraft with its aft fuselage tank. Source: Tupolev.

Read more

Bjorn’s Corner: The challenges of Hydrogen. Part 5. The Hydrogen tank.

By Bjorn Fehrm

August 21, 2020, ©. Leeham News: In our series on hydrogen as an energy store for airliners we start the design discussion of a hydrogen-fueled airliner by understanding the onboard storage of hydrogen better.

While there is present knowledge from for instance the space launcher industry, the storage demands for launchers are hours rather than days. Several implementations of longer storage aeronautical tanks have been done, among others by NASA/Boeing for high flying UAVs.

Airbus and the Russian aircraft industry were also active with research during the 1990s and Tupolev built a test aircraft that included a complete hydrogen fuel system (Figure 1).

Figure 1. The Tu-155 Hydrogen research aircraft. Source: Tupolev.

Read more

Bjorn’s Corner: The challenges of Hydrogen. Part 4. Hydrogen safety.

By Bjorn Fehrm

August 14, 2020, ©. Leeham News: In our series on hydrogen as an energy store for airliners we are closing in on the design problems for a hydrogen-fueled airliner.

One of the aspects we must understand before discussion aircraft solutions are the safety aspects of hydrogen as a fuel in aircraft. Another is the requirements for the storage of liquid hydrogen, LH2.

Figure 1. The Hindenburg disaster at Lakehurst in May 1937. Source: Wikipedia.

Read more