Bjorn’s Corner: Keeping airliners operational. Part 1

By Bjorn Fehrm

April 20, 2017, ©. Leeham Co: We will start the series on keeping airliners operational by discussing how the structure is kept fit.

There are three areas that are more key to flight safety of an airliner than others. The aircraft’s structure, the engines (already discussed) and the flight control system. We will start with the structure.

Figure 1. The first modern maintenance program was formed around the Boeing 747. Source: Wikipedia.

Read more

Bjorn’s Corner: Keeping airliners operational

By Bjorn Fehrm

April 20, 2017, ©. Leeham Co: We expect our flights to depart on time and with 100% safety. At the same time, the aircraft is used up to 14 hours and flies up to 5-6 missions a day.

This means 1,800 flights a year. As airliners will last 25 years, we talk about 45,000 flights with 99.7% dispatch reliability and 100% safety.

It’s clear the aircraft must be cared for in a special way. We’ll discover how.

Figure 1. The first modern maintenance program was formed around the Boeing 747, here at the roll out in 1968. Source: Wikipedia.

Read more

Bjorn’s Corner: Aircraft engines, sum up

By Bjorn Fehrm

April 14, 2017, ©. Leeham Co: We’ve been talking engines on Fridays since October 2016. The Corners covered several areas, from technologies to operations.

And we could go on and dig deeper. But we will move on.

Before we go, we sum up what we have learned in the 24 Corners around airliner Turbofans.

Figure 1. Principal picture of a three-shaft wide-body turbofan. Source: GasTurb.

Read more

Bjorn’s Corner: Aircraft engine maintenance, Part 6

 

By Bjorn Fehrm

April 7, 2017, ©. Leeham Co: Last week’s Corner developed the overhaul shop visits per year for wide-body engines. We will now look at how the market develops around these overhaul opportunities.

How does the shop structure develop over a popular engine’s life-cycle? How much choice has an operator and when?

Figure 1. Principal picture of a three-shaft wide-body turbofan with station numbers. Source: GasTurb.

Read more

Bjorn’s Corner: Aircraft engine maintenance, Part 5

By Bjorn Fehrm

March 31, 2017, ©. Leeham Co: In the last Corner, we showed flight hour graphs for wide-body engines. Now we will deduce the market for engine overhauls from these graphs.

It will show which engines are still in engine manufacturer care, in their main maintenance cycle and in the sun-set phase.

Figure 1. Principal picture of a three shaft turbofan. Source: GasTurb.

The phase the engine is in and its future flight hour development will decide the attractiveness of the engine for overhaul organizations. Read more

Bjorn’s Corner: Aircraft engine maintenance, Part 4

 

By Bjorn Fehrm

March 24, 2017, ©. Leeham Co: After covering the maintenance market for single-aisle engines, time has come for the engines used on wide-body aircraft. The engine maintenance for a wide-body engine is a bit different to the single-aisle engine. The difference is caused by the longer flight times for the wide-bodies. This makes the flight time wear a more dominant maintenance driver than it is for the single-aisle engines.

The changes in overhaul work caused by the difference in flight profiles and the lower number of engines in the market (compared to the single aisles) will affect how the overhaul market is structured and who are the dominant players.

Figure 1. Principal picture of a tri-shaft turbofan for the wide-body market. Source: GasTurb.

Read more

Bjorn’s Corner: Aircraft engine maintenance, Part 3

 

By Bjorn Fehrm

March 17, 2017, ©. Leeham Co: In the last Corner,  we showed graphs of the yearly flight hours for engines on single-aisle aircraft. Now we will deduce the market for engine overhauls from these graphs.

These will show which engines generate a maintenance volume that is interesting for engine overhaul companies and which engines are niche.

Figure 1. Principal picture of a direct drive turbofan. Source: GasTurb.

Based on the market size, we will then go through how an engine is maintained when new, mature and at end-of-life.

Read more

Bjorn’s Corner: Aircraft engines maintenance, Part 2

 

By Bjorn Fehrm

March 10, 2017, ©. Leeham Co: Last week we started the series how airline turbofans are maintained. We described the typical work scopes and what the intervals were for different single-aisle engines.

Before we can describe the engine maintenance market we must get a feel for the market size for different engine types.

 

Figure 1. Principal picture of a direct drive turbofan. Source: GasTurb.

We will start with understanding the single-aisle engine maintenance market. Read more

Bjorn’s Corner: Aircraft engine maintenance, Part 1

By Bjorn Fehrm

March 3, 2017, ©. Leeham Co: We will now go through how airline turbofans are maintained. First, we will describe the typical work which is performed, then look into the markets for engine maintenance.

In the markets for engine maintenance, we will look at who the players are, how they are related to the engine OEMs and why the market dynamics are very different between engines for single-aisle aircraft and wide-bodies.

Figure 1. Principal picture of a direct drive turbofan. Source: GasTurb.

Read more

Bjorn’s Corner: Aircraft engines in operation, Part 6

By Bjorn Fehrm

February 24, 2017, ©. Leeham Co: After having analyzed how the engine gets stressed during different phases of flight, we now look into how engines are used. The de-rating of engines for takeoff is important, as not 100% thrust is needed for all takeoffs. If the aircraft is lightly loaded or is taking off from a long runway, with low temperatures or altitude, the engine can be thrust de-rated so that it experiences less stress.

Once in the air, the engine is run below maximum settings by use of cost-index. These actions will result in less fuel usage and also longer engine operation between overhauls. We will now finish the operations part of our engine clinic with how airlines keep the engines away from the workshops by swapping the engines between fleet aircraft.

Figure 1. Principal picture of a direct drive turbofan. Source: GasTurb.

A visit to the engine workshop costs in the millions of dollars, so the longer the engine can operate before a shop visit, the better. Read more