Bjorn’s Corner: Sustainable Air Transport. Part 48. eVTOL traffic management

December 2, 2022, ©. Leeham News: Last week, we started looking at the air traffic problem of eVTOLs. The rulemaking on how these shall avoid running into each other, other aircraft, and drones outside controlled airspace is not done.

The first general principle has been issued by European rule-makers dealing with how drone traffic shall be regulated, and this will also be expanded to cover VTOLs. Airbus, the world’s largest vertical transport supplier, through its helicopters, gave its view on VTOL operations in its two-day Summit this week.

Figure 1. CityAirbus NG. Source: Airbus.

Read more

MTU gets support from Pratt & Whitney to develop the WET engine

By Bjorn Fehrm

November 29, 2022, © Leeham News: MTU and Pratt & Whitney presented an EU Clean Sky project today where they will develop an advanced engine concept based on the Pratt & Whitney GTF. The project is called SWITCH, an acronym for Sustainable Water-Injecting Turbofan Comprising Hybrid-Electrics.

There are participants from 11 countries in the project, among them Pratt & Whitney’s sister company Collins aerospace, GKN’s Swedish part, and Airbus.

The engine, which has a mild parallel hybrid architecture, extracts more energy from the turbofan fuel by driving the core exhaust through a vaporizer, where it recovers more heat from the core exhaust, Figure 1. Water from the exhaust, extracted from the core exhaust in a condenser, is heated to steam by the vaporizer and then drives a steam turbine that co-drives the fan. The steam is finally injected into the combustor to lower emissions.

The WET cycle will gain about 10% efficiency compared to today’s GTF. The concept also has a hybrid part which is primarily used for a low-emission taxi.

Figure 1. The architecture of the SWITCH engine. Source: SWITCH.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 47. eVTOL traffic

By Bjorn Fehrm

November 25, 2022, ©. Leeham News: We have gone through the flight principles for different eVTOLs, the critical systems such as battery systems and flight controls, their energy consumption/performance, and how green they are compared to other ways of getting to an airport.

This is all about the flying vehicle. But it’s only part of the system needed for this transport system to work and be safe. We now discuss the other bits needed.

Figure 1. The JFK, Newark, and Manhattan airspace. Click for a detailed view. Source: Foreflight.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 46. eVTOL comparison with helicopter

By Bjorn Fehrm

November 18, 2022, ©. Leeham News: In the comments to last week’s Corner, there were requests for a comparison with a helicopter re. Sustainability (kWh/km). Here you go.

I also threw in a cost of operations discussion, as the helicopter is the present alternative to an eVTOL for city-to-airport air transports.

Figure 1. The Robinson R66 five-seat helicopter. Source: Wikipedia.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 45. eVTOL, how green?

By Bjorn Fehrm

November 11, 2022, ©. Leeham News: We have spent some 50 articles going through the new air transport category, eVTOL, or electrically propelled Vertical TakeOff and Landing vehicles.

They promise to replace the helicopter for local air transport above congested cities and highways.

The question is now: How do eVTOLs fit in sustainable air transport? Are they a green way of starting a flight journey, and how does it compare to alternative transports?

Figure 1. The World’s energy consumption and sources. Source: World in Data and BP.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 44P. eVTOL operating costs. The deeper discussion.

Subscription required

By Bjorn Fehrm

November 4, 2022, ©. Leeham News: This is a complementary article to Part 44, eVTOL operating costs. It discusses the typical operating costs we can expect from an eVTOL when used in an air taxi operation.

Despite the operation of such transports being years off, an eVTOL has dominant cost factors that can be estimated today.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 43. eVTOL IFR range.

By Bjorn Fehrm

October 28, 2022, ©. Leeham News: This is a summary of the article Part 43P, eVTOL IFR range. It discusses the range of a typical eVTOL flying a feeder mission from a city center to an airport during IFR conditions.

IFR conditions mean we have a dicey weather forecast for our airport destination and must plan with an alternate landing site where the weather forecast is better.

Figure 1. The Vertical Aerospace VX4 in an early rendering with similar looks to the eVTOL we discuss. Source: Vertical Aerospace.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 43P. eVTOL IFR range. The deeper discussion.

Subscription required

October 28, 2022, ©. Leeham News: This is a complementary article to Part 43, eVTOL IFR range. It discusses the typical maximum range we can expect from a certified eVTOL when it faces IFR weather conditions.

Flying in IFR conditions requires flight planning with increased reserves if the eVTOL can’t land at the destination airport and must divert to an alternate airport.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 42. eVTOL range.

By Bjorn Fehrm.

October 21, 2022, ©. Leeham News: This is a summary of the article Part 42P, eVTOL range. It discusses the range of a typical eVTOL flying a feeder mission from a city center to an airport.

The 42P article details the energy consumption for each stage in the mission and the range we fly. We summarize the results here.

Figure 1. The Vertical Aerospace VX4 in an early rendering with similar looks to the eVTOL we discuss. Source: Vertical Aerospace.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 42P. eVTOL mission range. The deeper discussion.

Subscription required

October 21, 2022, ©. Leeham News: This is a complementary article to Part 42, eVTOL mission range. It discusses the typical maximum range we can expect from a certified eVTOL by mid-decade.

We have described the vehicle and the mission data in the three previous Corners; now, we analyze the energy consumption for the mission and discuss the range we can achieve.

Read more