September 27, 2024, ©. Leeham News: We do an article series about engine development and why it has longer timelines than airframe development. It also carries larger risks of product maturity problems when it enters service than the airframe of an airliner.
In our look at examples of recent developments with problems and these put in a historical perspective, looking at the reliability and durability of its predecessor we compare the Rolls-Royce Trent 1000 for the Boeing 787 to the Trent XWB for the Airbus A350.
Subscription required
By Bjorn Fehrm
September 26, 2024, © Leeham News: Heart Aerospace has revised its environmentally friendly aircraft for the third time. The variants started in September 2020, when Heart presented an all-electric, battery-based 19-seat airliner that should test fly by now and be available in 2026, Figure 1, top aircraft.
Two years later, in September 2022, it all changed. The aircraft was changed to a 30-seater with a serial hybrid propulsion system using turboextenders to increase the operational range, Figure 1, aircraft two.
After another 20 months, the configuration changed again to the third iteration in Figure 1, which will fly in prototype in 2026 and be available to airlines in 2029.
In an article series, we explain the reasons for these changes and analyze whether the changes in the aircraft have increased the likelihood of the ES-30 entering the market in 2029.
September 20, 2024, ©. Leeham News: We do an article series about engine development and why it has longer timelines than airframe development. It also carries larger risks of product maturity problems when it enters service than the airframe of an airliner.
In our look at examples of recent developments with problems and these put in a historical perspective, we compare the CFM56 to the LEAP, comparing their reliability and durability.
September 13, 2024, ©. Leeham News: We do an article series about engine development and why it has longer timelines than airframe development. It also carries larger risks of product maturity problems when it enters service than the airframe of an airliner.
We have covered the engine’s different parts and their technology challenges. We now look at some examples of recent developments with problems and put them in a historical perspective.
September 30, 2024, ©. Leeham News: We do an article series about engine development and why it has longer timelines than airframe development. It also carries larger risks of product maturity problems when it enters service than the airframe of an airliner.
We have covered the parts of an engine that involve challenging technology and which decide its reliability (dispatch consistency) and durability (time on wing). Now, we discuss why modern engine design is more challenging regarding these parameters than airframe design.
August 30, 2024, ©. Leeham News: We do an article series about engine development and why it has longer timelines than airframe development. It also carries larger risks of product maturity problems when it enters service than the airframe of an airliner.
We reached the turbine part on our way through the engine, where we last looked at high-pressure turbine temperatures. It’s the most stressed part of the engine and, in most cases, decides its durability. To understand why, we look closer at turbine technologies.
August 23, 2024, ©. Leeham News: We do an article series about engine development and why it has longer timelines than airframe development. It also carries larger risks of product maturity problems when it enters service than the airframe. We discuss why.
In our journey through an engine, we have reached the turbine part, where we will dig deeper into the high-pressure turbine. This is the most stressed part of the engine and has a major influence on engine performance and durability.
Figure 1. Our example engine, the LEAP-1A cross-section with the high-pressure turbine marked. Source: CFM.
August 16, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
We have covered the different areas of a gas turbine except the exhaust (Figure 1). Before we go to the exhaust and the different outputs from a gas turbine Core, we look at the temperatures and how to cope with them in the different sections of a gas turbine.
August 9, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
We have covered the problem areas of (Figure 1) compression in the compressor and combustion. Now, we look at the power-generating section, the turbines.
August 2, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
We have covered the problem areas of (Figure 1) compression in the compressor and combustion, with its requirements on low Soot and NOx emissions. Now we look at how combustors are designed to achieve such low emissions.