July 26, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
We have covered the compression in the compressor (Figure 1) and now go on to combustion in the combustor.
By Bjorn Fehrm and Scott Hamilton
July 24, 2024, © Leeham News at Farnborough International Airshow: Start-up airplane company Maeve and Pratt & Whitney Canada (PWC) have teamed for the design of a new eco-airplane driven by a new type of hybrid electric propulsion system with a target service entry date of 2032.
The M80 aircraft is the latest iteration of a design conceived by Maeve of the Netherlands. It is a 76 to 96-seat twin-engine aircraft that is compliant with the restrictive US pilot Scope Clauses, which limit the size, number, and weight of airplanes operated on behalf of US major airlines. Maeve originally designed a four-engine, 44-passenger electric aircraft called the M01.
July 19, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
We have covered the problem areas of a compressor and how these achieve power-to-air-pressure conversion efficiencies of over 90% by using advanced 3D airflow modeling. Now, we look at the users of the air from the engin’s compressor.
July 12, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
We covered the problem areas of a compressor last week. Now, we will discuss how modern compressors can have over 90% conversion efficiency from turbine power to air compression.
July 5, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
We covered the basics of how a compressor works last week. Now, we look at the challenges in compressor design (there are plenty).
June 21, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
After covering the main thrust-generating device, which we can call a propeller, fan, or open rotor, depending on the application, we now look at the core, which provides the power to the thrust device. And there, we look at how we use the properties of the air as a gas to get it into a state that the gas turbine needs for different sections.
June 14, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
We have covered the main thrust-generating device, which we can call a propeller, fan, or open rotor, depending on the application. To drive the main thrust device, we need a lot of shaft power, which is provided by the core. We start with how the core, which is a gas turbine, generates power.
June 7, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
Following the last Corner on airframe integration, several comments were made about the definition of propeller, open rotor, and/or fan. So, we’ll explore this further.
May 24, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
In the last Corner, we looked at the nacelles used for a turbofan engine and for an open-rotor engine. Now, we go one step further and look at the integration of modern engines on an airliner.
May 17, 2024, ©. Leeham News: We do an article series about engine development. The aim is to understand why engine development now has longer timelines than airframe development and carries larger risks of product maturity problems.
To understand why engine development has become a challenging task, we need to understand engine fundamentals and the technologies used for these fundamentals.
In the last Corner, we looked at why Open-Rotor engines are more efficient. Their propulsive efficiency can be considerably higher than that of a turbofan. We will explore this further this week.