By Scott Hamilton
Sept. 25, 2020, © Leeham News: Commercial aviation has had 70 years to use jet fuel safely. It’s unclear how long it will take to reach the same level of safety with hydrogen, say Boeing.
In a briefing Tuesday, the day after Airbus revealed its hydrogen powered concepts for three potential airliners, the vice president and general manager of product development expressed caution about hydrogen as a fuel source.
September 25, 2020, ©. Leeham News: In our series on Hydrogen as an energy store for airliners, we look at the three hydrogen-based concept aircraft Airbus presented this week.
They are called ZEROe and are concepts and not products, but their design tells us a lot about where Airbus is with its studies and how the hydrogen demonstrator aircraft might look like come 2026-2028.
By Bjorn Fehrm
September 21, 2020, © Leeham News: Airbus held a webcast today, announcing three zero-emission airliner concepts called the ZEROe line (Figure 1). The two conventional designs, the turbofan airliner and the turboprop use hydrogen as the fuel for their gas turbine engines. The blended wing-body is a more futuristic concept where propulsion technology was not specified.
The idea is to use these concepts as work paths to explore the technologies around them and their aerodynamic characteristics. The concepts “are not products” underlined Airbus EVP development Jean-Brice Dumont. “It’s rather examples of designs around which the technologies can be explored and results compared. After concepts follow demonstrators and then products.”
September 18, 2020, ©. Leeham News: In our series on hydrogen as an energy store for airliners we analyze the conversion of the present Turbofan and Turboprop airliner engines to hydrogen as fuel instead of carbon-based fuels.
We know it’s possible as the world’s first jet engine from 1937 ran on hydrogen, Figure 1. But what are the problems and how good are the hydrogen-fueled engines in efficiency and emissions?
September 11, 2020, ©. Leeham News: In our series on Hydrogen as an energy store for airliners we look at whether we use an LH2 burning Turbofan as propulsion or as the EU study proposed, a Parallel Hybrid feed by a fuel cell, Figure 1.
September 4, 2020, ©. Leeham News: In our series on Hydrogen as an energy store for airliners we look at the rest of the fuel system after we looked at the hydrogen tanks over the last weeks.
The cryogenic state of the liquid hydrogen (cryogenic=very low temperatures, -253°C) creates some new challenges when designing the fuel system.
August 28, 2020, ©. Leeham News: In our series on Hydrogen as an energy store for airliners we look at the challenge of placing the hydrogen tanks efficiently.
Different from carbon fuels, liquid hydrogen needs specially shaped and bulky tanks. It can’t be stored in the wingbox as today’s Jet-A1.
August 21, 2020, ©. Leeham News: In our series on hydrogen as an energy store for airliners we start the design discussion of a hydrogen-fueled airliner by understanding the onboard storage of hydrogen better.
While there is present knowledge from for instance the space launcher industry, the storage demands for launchers are hours rather than days. Several implementations of longer storage aeronautical tanks have been done, among others by NASA/Boeing for high flying UAVs.
Airbus and the Russian aircraft industry were also active with research during the 1990s and Tupolev built a test aircraft that included a complete hydrogen fuel system (Figure 1).
August 14, 2020, ©. Leeham News: In our series on hydrogen as an energy store for airliners we are closing in on the design problems for a hydrogen-fueled airliner.
One of the aspects we must understand before discussion aircraft solutions are the safety aspects of hydrogen as a fuel in aircraft. Another is the requirements for the storage of liquid hydrogen, LH2.