Bjorn’s Corner: Sustainable Air Transport. Part 3. Low hanging fruit.

By Bjorn Fehrm

January 21, 2021, ©. Leeham News: Whatever is done in terms of new Sustainable technology for the aircraft, will have a limited influence on the amount of Greenhouse gases that Air Transport emits before 2050.

We will only get the new aircraft types into operation about 15 years before the deadline and with, on average, 100 to 200 aircraft per year. That’s 1,500 to 3,000 of the total of 25,000 aircraft that operate in our skies daily. It will not reduce our Greenhouse gas emissions significantly.

Sustainable Aviation Fuel, SAF, will help, but only when it’s available in quantity and to a reasonable cost. We can do things that have a much faster effect, and that’s how we manage our flights.

Figure 1. The US flights as seen on Flightradar24 yesterday. Source: Flightradar24.

Read more

Reducing one’s carbon footprint through flying choices

Subscription Required

By Vincent Valery

Introduction  

Jan. 20, 2022, © Leeham News: Discussions about reducing commercial aviation’s carbon emissions have become more prominent over the last few years.

Many projects claim that electric(-hybrid) and hydrogen aircraft will be available in the not-too-distant future to make net-zero emissions flying a reality. Sustainable Aviation Fuels (SAFs) will also drastically reduce lifecycle carbon emissions with only minor changes to the current aircraft.

The IATA committed to a net-zero carbon emissions target by 2050. While all those long-term aspirations are well, significant challenges remain.

LNA has highlighted that the low energy density of batteries means that electric aircraft can at best work on small planes for short flights. Developing a medium-haul hydrogen-powered aircraft will require numerous innovations that suggest an entry into service before 2035 is not realistic. The challenges in increasing SAFs supply affordably to meaningful levels are monumental.

We have pointed out that all the above are far into the future. To meaningfully reduce emissions over the next decade, the introduction of more fuel-efficient gas turbines and turboprops is the only realistic and impactful lever.

Another lever has not been mentioned so far to reduce one’s carbon emissions. Other than not flying at all, how we fly from A to B can have significantly different carbon footprint levels.

This series will highlight the different levels of carbon emissions depending on how one flies on different routes.

Summary
  • Setting the problem out;
  • Challenges in defining unit emissions;
  • Factors outside one’s control;
  • Introducing a few examples.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 2. The problem to solve?

By Bjorn Fehrm

January 14, 2021, ©. Leeham News: Before we dig into the different alternatives we have for more Sustainable Air Transport, let’s look at the problem and its sources.

Figure 1 shows the emissions of CO2 per person since 1900 and the rise of the world temperature. The increase in world temperature changes the weather, with increased weather-related emergencies in recent years.

Figure 1. The increase in CO2 emission per capita and the rise of the world temperature from 1900 to 2018. Source: Wikipedia.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 1. A deeper look.

By Bjorn Fehrm

January 7, 2022, ©. Leeham News: We finished a 34 article series before Christmas about the enormous work involved to get a new aircraft certified for passenger transport.

It was a background article series to the one we start now, a deeper series on what’s involved in designing air transport vehicles that are less polluting for our environment. We have seen a landslide of such projects in the last years, and from an experienced aircraft designer’s desk, most of these are doomed for failure.

Figure 1. The Embraer Energia concept aircraft. A credible Sustainable Air Transport research program. Source: Embraer.

Read more

Pontifications: Bringing some reality on electric airplanes

Nov. 15, 2021, © Leeham News: The momentum and press about electric airplanes is spinning out of control.

By Scott Hamilton

Earlier this month, there was an article from one of the most respected news organizations by a reporter who apparently isn’t an aviation reporter that read like a press release from a start-up company. The normal beat reporter would never have been taken in by the hype.

The start-up claims there will be a battery-powered BAe 146 by 2027 with a 460-mile range. Aviation reporter Jason Rabinowitz had a field day on Twitter with the claim.

LNA’s Bjorn Fehrm wrote a long series about the technical challenges of battery-powered electric airplanes. Let’s now look at the market implications.  Read more

Bjorn’s Corner: The challenges of airliner development. Part 12. The Prelaunch Phase.

By Bjorn Fehrm, Henry Tam, and Andrew Telesca.

July 16, 2021, ©. Leeham News: Last week, we showed the first cut of an overall Program Plan for our 19 seat airliner project.

Now we discuss the Prelaunch Phase activities in more detail, including what type of knowledge, tools and resources we need to get on board for the project.

Figure 1. The Viking Twin-Otter utility-oriented unpressurized 19 seater. Source: Wikipedia.

Read more

The true cost of Electric Aircraft. Part 2.

Subscription Required

By Bjorn Fehrm

Introduction  

July 8, 2021, © Leeham News: Last week, we looked at the cost of running an electric 19 seat airliner based on energy stored in batteries. We found the energy costs were lower than for the equivalent turboprop aircraft, but when we add the maintenance costs for the batteries, the operating costs were higher than today’s 19 seat commuter.

This was under the assumption that the battery aircraft had the same energy consumption as today’s aircraft. We now run this check. The result is eye-opening.

Figure 1. Heart Aerospace ES-19 battery-based airliner. Source: Heart Aerospace.

Summary
  • Battery based aircraft weigh significantly more than jet fuel based ones. It increases their energy consumption.
  • Last week’s findings were conditioned on the same energy consumption. This week’s analysis proofs this is not a valid assumption.

Read more

Bjorn’s Corner: The challenges of hydrogen. Part 33. Wrap-up: The Eco-system

By Bjorn Fehrm

April 16, 2021, ©. Leeham News: Last week, we wrapped up the operational part of sustainable air transport using hydrogen as an energy source.

Now we look at where we are with the all-important Eco-system. It has many moving parts and risks a chicken and egg stalemate.Figure 1. The prospective conversion of the European gas pipeline network to hydrogen. Source: EU.

Read more

Pontifications: Recovery plans from the pandemic at ATR, De Havilland

By Scott Hamilton

March 29, 2021, © Leeham News: Aviation stakeholders’ attention understandably focuses on Airbus and Boeing as the industry works its way through the COVID-19 pandemic. Embraer gets less attention than the Big Two.

But two other OEMs must be considered as well: ATR and De Havilland Canada.

Outside of China and Russia, whose home-grown industries sell only to these markets, ATR and DHC are the only manufacturers of turboprops in the 50-90 seat sectors.

LNA revealed on Jan. 12 that DHC would suspend Dash 8-400 production after the small backlog rolled off the assembly line. The privately held company delivered 11 airplanes last year due to the pandemic.

About 900 aging regional turboprop aircraft need to be replaced in the coming years.

Read more

Bjorn’s Corner: The challenges of hydrogen. Part 28. Airbus priorities

March 12, 2021, ©. Leeham News: I had the chance to talk about Sustainable Air Transport with Airbus VP Zero Emission Aircraft, Glenn Llewellyn, in the week.

The discussion centered around Airbus’ overall direction and the targets with their ZEROe project.

Figure 1. Airbus ZEROe airliner concepts. Source: Airbus.

Read more