Eviation announces firm configuration for battery-powered 9-seater

By Bryan Corliss
July 1, 2021, © Leeham News: Seattle-area electric aircraft builder Eviation revealed Thursday that it has reached firm design configuration for its battery-powered, nine-seater Alice aircraft.

The announcement – which typically would signify that Eviation designers have locked-in design features, so that suppliers can use their drawings to begin work on their components – is more of a formality, however.

Eviation Executive Chairman Roei Ganzarski said suppliers already have delivered shipsets for the first production Alice, and mechanics at the company’s Arlington, WA, plant have begun final assembly.

“The plane is being built as we speak,” Ganzarski said. The company is on track for a first flight before year’s end, he added.

Read more

The true cost of Electric Aircraft

Subscription Required

By Bjorn Fehrm

Introduction  

July 1, 2021, © Leeham News: In our Friday Corners, we analyze the development challenges of aircraft. We will launch a concrete project Friday where we intend to develop a 19 seat airliner. To make it interesting, it will be a Green aircraft. We focus on the Certification issues in the Corner series.

To complement it, we here look at the operating cost of a battery-based electric airliner, as there are costs that are often not presented to the public in the marketing of these alternatives. The operational costs for the huge batteries are too often forgotten.

Figure 1. Heart Aerospace ES-19 battery based airliner. Source: Heart Aerospace.

Summary
  • Electric aircraft using batteries as energy stores are proposed for extreme short-range flights (below 200nm). The short flights shall make the weight of the batteries needed bearable.
  • One advantage of these aircraft compared to today’s turboprops shall be their lower energy and maintenance costs. While this is true as long as we don’t count the batteries, including those in the maintenance costs changes the equation.

Read more

Bjorn’s Corner: The challenges of airliner development. Part 6. Adding seats.

By Bjorn Fehrm, Henry Tam, and Andrew Telesca.

June 04, 2021, ©. Leeham News: Last week, we examined operating and product certification rules related to 9-seater air taxis and commuters. We took the example of the new Tecnam P2012 Traveller to study the certification rules for a 9-seater. Now we upsize the aircraft to understand the pros and cons of adding extra seats.

The Viking Twin Otter, the only in-production 19-seater. Source: Viking Air

Read more

Bjorn’s Corner: The challenges of hydrogen. Part 32. Wrap-up: Going forward

By Bjorn Fehrm

April 9, 2021, ©. Leeham News: Last week we made a summary of the history of initiatives for sustainable aviation, now we look at the likely developments over the next 10 years.

What is the likely development for different classes of airliners and what technologies will be popular?

Read more

Bjorn’s Corner: The challenges of hydrogen. Part 30. Integrated nacelles.

By Bjorn Fehrm

March 26, 2021, ©. Leeham News: This week, we look at combining the propulsion and hydrogen tank in an integrated nacelle as Airbus proposes in Figure 1.

Airbus calls it its “pod” solution. What are the advantages, and what challenges does it present?

Figure 1. Airbus concept for a turboprop with integrated nacelles. Source: Airbus.

Read more

Bjorn’s Corner: The challenges of hydrogen. Part 27. Fuel cell APU gains

By Bjorn Fehrm

March 5, 2021, ©. Leeham News: We have discussed different auxiliary power generation principles for a hydrogen aircraft over the last weeks. We found a fuel cell auxiliary power system has many attractions, one being the possibility of making an elegant more-electric aircraft system architecture.

With or without such an architecture, the fuel cell alternative will save hydrogen consumption and cost compared to a hydrogen-converted APU alternative. What’s the value of the saving?

Figure 1. The Ballard/Audi FCgen-HPS fuel cell stack for cars and other mobility applications. Source: Ballard Power Systems Inc.

Read more

Bjorn’s Corner: The challenges of hydrogen. Part 24. Propulsion choice

By Bjorn Fehrm

February 12, 2021, ©. Leeham News: After covering the basics of fuel cells last week in our hydrogen airliner series, we now look at what type of system to choose for aircraft propulsion and onboard systems power.

We analyze the propulsion side this week.

Figure 1. A SAFRAN concept for a low emission airliner from its Clean Sky 2 presentation. Source: SAFRAN.

Read more

Bjorn’s Corner: The challenges of hydrogen. Part 23. Hydrogen fuel cells

By Bjorn Fehrm

February 5, 2021, ©. Leeham News: Last week, we started the discussion around fuel cells as a source of electric energy in airliners. We went through the principle and asked some vital questions.

Now we look at different types of fuel cells and for what applications these are suited.

Figure 1. The principle of a hydrogen fuel cell. Source: Airbus.

Read more

Bjorn’s Corner: The challenges of hydrogen. Part 22. Hydrogen fuel cells

By Bjorn Fehrm

January 29, 2021, ©. Leeham News: Over the last weeks, we looked at Center of Gravity (CG) problems with rear fuselage liquid hydrogen tanks as used in Airbus’ ZEROe turbofan airliner concept. We can conclude that the CG shift is manageable for a short-range aircraft (range below 2,000nm).

Now we spend the next Corners diving into hydrogen fuel cell technology and how it can benefit a hydrogen-fueled airliner.

Figure 1, The principle of a hydrogen fuel cell. Source: Airbus.

Read more

Bjorn’s Corner: The challenges of Hydrogen. Part 10. Airbus’ Hydrogen ZEROe concepts

September 25, 2020, ©. Leeham News: In our series on Hydrogen as an energy store for airliners, we look at the three hydrogen-based concept aircraft Airbus presented this week.

They are called ZEROe and are concepts and not products, but their design tells us a lot about where Airbus is with its studies and how the hydrogen demonstrator aircraft might look like come 2026-2028.

Read more