July 25, 2025, ©. Leeham News: In October last year, we began a series on how air transport is performing against the emission goals for the year 2050.
The ambition to reduce and eventually eliminate greenhouse gas emissions began in earnest 11 years ago, when Airbus flew the Airbus E-Fan at the 2014 Farnborough Air Show (Figure 1).
The result of this inspiring flight, which utilized technology that emitted no CO2 or other greenhouse gases (if the batteries were charged with green electricity), was an avalanche of projects from established players as well as upstarts. The optimistic view was that there was a solution to the emissions from airliners.
Subscription required
By Bjorn Fehrm
July 21, 2025, © Leeham News: Our series about “What’s the next new aircraft” was introduced last week, where we look at what potential new aircraft could be introduced over the following decades, and what technologies these would use.
In Part 2 of the five-part series, we introduce some basics around aircraft efficiency and examine what areas these 13 new aircraft aim to improve to enhance their efficiency.
In the following Parts, we will look into these aircraft in more detail and write about how challenging it will be to develop and mature the needed technologies.
July 18, 2025, ©. Leeham News: We have done a Corner series on the state of actions to mitigate the global warming impact from Air Transport. Now, we start to summarize what we’ve learned.
During the series, we compiled tables describing the warming effect of air transport in 2024 and a calculation of the effect during 2050. We made two tables, one with the most probable effects, Figure 1, and one where we downplayed the non-CO2 effects to the maximum given in the Lee et al. 2021 study, to a 5% probability, Figure 2.
Figure 1. The effects of Actions 1 to 4 on CO2 and NOx, represented as CO2e emissions during 2050. Source: Leeham Co. Click to enlarge.
Before we summarize by examining the tables, we will discuss the additive effects of CO2 and non-CO2 warming over a given time period, as the different components don’t have the same decay time of their warming effects.
June 13, 2025, ©. Leeham News: We do a Corner series about the state of developments to improve the emission situation for Air Transport. We try to understand why development has been slow.
We have examined different ways to lower global warming over the course of the series. Over the last weeks, we have summarized what practical results we can expect from the different alternatives we have to reduce global warming from Air Transport. We looked at the following alternatives:
May 9, 2025, ©. Leeham News: We do a Corner series about the state of developments to improve the emission situation for Air Transport. We try to understand why development has been slow.
Since we started in October last year, we have looked at:
Last week, we listed some base data about the present situation for Global Air Transport. We will now use this data to calculate the effect of air transport on global warming from the three alternatives.
March 7, 2025, ©. Leeham News: We do a Corner series about the state of developments to replace or improve hydrocarbon propulsion concepts for Air Transport. We try to understand why the development has been slow.
Last week, we wrote about Pratt & Whitney’s announcement in January: their trials with critical components of their HySIITE engine, Figure 1, showed that they could increase the efficiency of a hydrogen burn engine by 35%!
It does this by intelligently using the water released when hydrogen oxidizes with the air’s oxygen. The water separated from the exhaust is reheated into steam and entered into the engine’s combustion, reducing NOx by 99.3% and increasing the engine efficiency by 35%.
February 21, 2025, ©. Leeham News: We do a Corner series about the state of developments to replace or improve hydrocarbon propulsion concepts for Air Transport. We try to understand why the development has been slow.
Last week, we reviewed the present fallout of lower emission projects that have not reached their goals and where investors, therefore, have decided not to invest further.
There is a well-known project failing every month at the present pace. Some recent ones: Universal Hydrogen’s ATR conversions, Volocopter and Lilium’s bankruptcies, Airbus freezing the CityAirbus eVTOL (Figure 1) and pushing out the ZEROe hydrogen airliner, hibernation of the Alice battery aircraft, etc. There will probably be more in the coming months.
February 14, 2025, ©. Leeham News: We do a Corner series about the state of developments to replace or improve hydrocarbon propulsion concepts for Air Transport. We try to understand why the development has been slow.
We have covered the progress of battery-based aircraft and hybrids. Last Corner started looking at hydrogen-fueled alternatives. A day after the Corner, the Airbus workers union Force Ovrier published information from an Airbus internal meeting, in which the airframer delayed the introduction of a hydrogen aircraft by 2035 to about 10 years later. As a consequence, it reduces the R&D spending on the development of hydrogen propulsion technologies.
February 7, 2025, ©. Leeham News: We do a Corner series about the state of developments to replace or improve hydrocarbon propulsion concepts for Air Transport. We try to understand why the development has been slow.
We have covered the progress of battery-based aircraft and hybrids, where the last Corner was about the most sensible hybrids, the mild hybrids. Now, we turn to hydrogen-fueled alternatives.
January 31, 2025, ©. Leeham News: We do a Corner series about the state of developments to replace or improve hydrocarbon propulsion concepts for Air Transport. We try to understand why the development has been slow.
We have covered the progress of battery-based aircraft and hybrids, both serial and parallel hybrids. A couple of mild hybrids have a larger chance of success than the ones we described. We will look into these and then start looking at different hydrogen-fueled alternatives.