October 25, 2019, ©. Leeham News: To better understand what went wrong in the Boeing 737 MAX crashes I have over the last half-year run Corner series around aircraft Pitch stability and Aircraft Flight Control systems and how these attack the problems of today’s airliners need for stable characteristics over a very wide flight envelope.
With this as a backgound, we will now in a series of Corners go into the Lion Air final crash report which is issued today, to understand what happened and why.
October 18, 2019, ©. Leeham News: In our series about classical flight controls (“fly by steel wire”) and Fly-By-Wire (FBW or “fly by electrical wire”) we continue our discussion of pitch stability augmentation systems when we have a mechanical (“fly by steel wire”) pitch control system.
October 11, 2019, ©. Leeham News: In our series about classical flight controls (“fly by steel wire”) and Fly-By-Wire (FBW or “fly by electrical wire”) we continue our discussion of pitch stability augmentation systems when we have a mechanical (“fly by steel wire”) pitch control system.
October 4, 2019, ©. Leeham News: In our series about classical flight controls (“fly by steel wire”) and Fly-By-Wire (FBW or “fly by electrical wire”) we now discuss pitch stability augmentation systems when we need to improve the pitch characteristics of a mechanical (“fly by steel wire”) pitch control system.
Figure 1. The pitch moment curve of a modern airliner when circling before landing. Source: Leeham Co.
September 20, 2019, ©. Leeham News: In our series about classical flight controls (“fly by steel wire”) and Fly-By-Wire (FBW or “fly by electrical wire”) we discussed the FBW flight control system of Embraer’s E-Jet E2 series last week.
We have now covered examples of classical flight controls and their modern FBW counterparts. Now we discuss how these handle different stability augmentation needs like Yaw damping, Mach tuck protection or Pitch control improvements like the Boeing 737 MAX MCAS system.
September 13, 2019, ©. Leeham News: In our series about classical flight controls (“fly by steel wire”) and Fly-By-Wire (FBW or “fly by electrical wire”) we discussed the flight control laws of Boeing’s 777/787 and Airbus’ A220 last week.
Now we continue with Embraer’s fourth-generation FBW, the one for the E-Jet E2 series.
August 30, 2019, ©. Leeham News: In our series about classical flight controls (“fly by steel wire”) and Fly-By-Wire (FBW or “fly by electrical wire”) we now discuss the flight control laws which are used for Classical flight controls and FBW systems.
August 23, 2019, ©. Leeham News: In our series about classical flight controls (“fly by steel wire”) and Fly-By-Wire (FBW or “fly by electrical wire”) we now look at practical implementations after discussing the authority of the flight control system last week.
As before we compare the classical 737 system to the A320 FBW system.