Bjorn’s Corner: Sustainable Air Transport. Part 33. eVTOL batteries.

August 19, 2022, ©. Leeham News: This is a summary of article Part 33P, eVTOL batteries. This article discusses the trickiest system on an eVTOL, the battery system.

The battery system supplies the energy to the VTOL, and given today’s and tomorrow’s battery technology; it’s a tight resource that needs a lot of pampering.

Figure 1. We use graphs in the Pipistrel spare parts catalog to show the battery system of the Pipistrel Velis Electro. Source: Pipistrel and Leeham Co.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 31. Mixed architectures.

By Bjorn Fehrm

August 5, 2022, ©. Leeham News: This week, we look at two eVTOLs that don’t fit the terminology we use; Multicopters, Vectored thrust, or Lift and Cruise. The Vertical VX4 and Archer Maker are Lift and Cruise designs, but they use vectored thrusters for the cruise thrust, Figure 1.

Figure 1. The Vertical VX4. Source: Vertical Aerospace.

Read more

Airbus prepares contrail flight tests

July 21, 2022, © Leeham News at Farnborough Air Show: Airbus is converting two Arcus high-altitude gliders to check if the contrails produced by hydrogen combustion engines create an environmental problem.

The background is that experts can’t agree if the water vapor produced by hydrogen combustion (which merges hydrogen with oxygen to water) can cause global warming or not. The only way to resolve the dispute and gain fundamental knowledge is to fly and measure.

Figure 1. First flight with the Blue Condor program’s test aircraft. Source: Airbus.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 27. Multicopters.

July 8, 2022, ©. Leeham News: We will start the analysis of the market’s most prominent VTOL variants by looking at the simplest version, multicopters.

When we analyze the multicopters, we can go through some fundamentals of how VTOL operates and the technology used.

Figure 1. The VoloCity multicopter of the Volocopter company. Source: Volocopter.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 26. VTOLs.

By Bjorn Fehrm

July 1, 2022, ©. Leeham News: Last week, we finished our discussions around Fuel Cell-based airliners using hydrogen as fuel.

We could see the technology has true zero emissions, but the maturity of the many parts needed (hydrogen tank and fuel system, multi-MegaWatt class aeronautical fuel cells, motors, and controls) are not there. We are in the crawling before walk stage with sub-MegaWatt systems to make their first flights over the next years.

Another area claiming Green credentials is the VTOL space. Because these are based on electric technology, VTOLs are claimed as environmentally friendly and a good way to transport people.

We will analyze this industry and its claims of being an efficient, environmentally friendly way of transportation.

Figure 1. Joby S4, the VTOL project that has come the furthest. Source: Joby Aviation.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 25. High Temperature Fuel Cell-based 70-seat airliner

By Bjorn Fehrm

June 24, 2022, ©. Leeham News: Last week, we discussed how a High Temperature Fuel Cell (HTFC) could improve the installation of a propulsion system in our 70-seat airliner. We now add this variant to the systems we examined for installation effects and efficiencies.

The deeper discussion is in the sister article, Part 25P. High Temperature Fuel Cell-based 70-seat airliner.

Figure 1. The ATR 72-600 70-seater turboprop. Source: ATR.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 25P. High Temperature Fuel Cell-based 70-seat airliner. The deeper discussion.

Subscription required

June 24, 2022, ©. Leeham News: This is a complementary article to Part 25, High Temperature Fuel Cell-based 70-seat airliner. It adds the masses and efficiencies of a High Temperature Fuel Cell system to our 70-seat airliner fuel cell variants.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 24. High Temperature Fuel Cells

By Bjorn Fehrm

June 17, 2022, ©. Leeham News: Last week, we looked at the installation effects and efficiencies of the fuel cell systems we discussed in earlier parts of the series.

We could see the variants were significantly heavier than the propulsion system they would replace for an ATR72 size aircraft. The discussion assumed classical PEM fuel cells, also called Low Temperature PEM Fuel Cells. Now we look at if High Temperature PEM Fuel Cells can improve the installation situation.

Figure 1. The ATR 72-600 70-seater turboprop. Source: ATR.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 23. Fuel Cell-based 70 seat airliner

June 10, 2022, ©. Leeham News: Last week, we looked at the different fuel cell systems that can go into a 70-seat airliner like the ATR 72. In this week’s Corners, we implement these in the aircraft and look at installation effects and efficiencies.

The deeper discussion is in the sister article, Part 23P. Fuel Cell-based 70-seat airliner.

Figure 1. The ATR 72-600 70-seater turboprop. Source: ATR.

Read more

Bjorn’s Corner: Sustainable Air Transport. Part 23P. Fuel Cell-based 70-seat airliner. The deeper discussion.

Subscription required

June 10, 2022, ©. Leeham News: This is a complementary article to Part 23, Fuel Cell-based 70-seat airliner. It analyses the masses and efficiencies of a 70-seat airliner equipped with the fuel cell-based propulsion systems we analyzed last week.

Read more