October 21, 2022, ©. Leeham News: This is a summary of the article Part 42P, eVTOL range. It discusses the range of a typical eVTOL flying a feeder mission from a city center to an airport.
The 42P article details the energy consumption for each stage in the mission and the range we fly. We summarize the results here.
Subscription required
October 21, 2022, ©. Leeham News: This is a complementary article to Part 42, eVTOL mission range. It discusses the typical maximum range we can expect from a certified eVTOL by mid-decade.
We have described the vehicle and the mission data in the three previous Corners; now, we analyze the energy consumption for the mission and discuss the range we can achieve.
August 19, 2022, ©. Leeham News: This is a summary of article Part 33P, eVTOL batteries. This article discusses the trickiest system on an eVTOL, the battery system.
The battery system supplies the energy to the VTOL, and given today’s and tomorrow’s battery technology; it’s a tight resource that needs a lot of pampering.
August 5, 2022, ©. Leeham News: This week, we look at two eVTOLs that don’t fit the terminology we use; Multicopters, Vectored thrust, or Lift and Cruise. The Vertical VX4 and Archer Maker are Lift and Cruise designs, but they use vectored thrusters for the cruise thrust, Figure 1.
July 21, 2022, © Leeham News at Farnborough Air Show: Airbus is converting two Arcus high-altitude gliders to check if the contrails produced by hydrogen combustion engines create an environmental problem.
The background is that experts can’t agree if the water vapor produced by hydrogen combustion (which merges hydrogen with oxygen to water) can cause global warming or not. The only way to resolve the dispute and gain fundamental knowledge is to fly and measure.
July 8, 2022, ©. Leeham News: We will start the analysis of the market’s most prominent VTOL variants by looking at the simplest version, multicopters.
When we analyze the multicopters, we can go through some fundamentals of how VTOL operates and the technology used.
July 1, 2022, ©. Leeham News: Last week, we finished our discussions around Fuel Cell-based airliners using hydrogen as fuel.
We could see the technology has true zero emissions, but the maturity of the many parts needed (hydrogen tank and fuel system, multi-MegaWatt class aeronautical fuel cells, motors, and controls) are not there. We are in the crawling before walk stage with sub-MegaWatt systems to make their first flights over the next years.
Another area claiming Green credentials is the VTOL space. Because these are based on electric technology, VTOLs are claimed as environmentally friendly and a good way to transport people.
We will analyze this industry and its claims of being an efficient, environmentally friendly way of transportation.
June 24, 2022, ©. Leeham News: Last week, we discussed how a High Temperature Fuel Cell (HTFC) could improve the installation of a propulsion system in our 70-seat airliner. We now add this variant to the systems we examined for installation effects and efficiencies.
The deeper discussion is in the sister article, Part 25P. High Temperature Fuel Cell-based 70-seat airliner.
Subscription required
June 24, 2022, ©. Leeham News: This is a complementary article to Part 25, High Temperature Fuel Cell-based 70-seat airliner. It adds the masses and efficiencies of a High Temperature Fuel Cell system to our 70-seat airliner fuel cell variants.
June 17, 2022, ©. Leeham News: Last week, we looked at the installation effects and efficiencies of the fuel cell systems we discussed in earlier parts of the series.
We could see the variants were significantly heavier than the propulsion system they would replace for an ATR72 size aircraft. The discussion assumed classical PEM fuel cells, also called Low Temperature PEM Fuel Cells. Now we look at if High Temperature PEM Fuel Cells can improve the installation situation.