February 17, 2017, ©. Leeham Co: In our journey of an airline engine’s life, we will now look at the maintenance which is necessary to keep it fit for flight.
An engine is only in top condition once in its life, at delivery. As soon as it’s operated on the aircraft, in-service wear of its different parts will reduce its performance.
The engine manufacturer’s prescribed maintenance is designed to keep the engine in good health during its life, despite all its hardship. Read more
February 3, 2017, ©. Leeham Co: In the last Corner, we went through how our airliner engine reacts to the different phases of flight, including what happens when we operate in a hot environment.
We also showed how engine manufacturers make a series of engines with different thrust ratings by de-rating the strongest version through the engine control computer.
We will now look deeper at how engines are controlled and why so-called flat-rating is important. Read more
January 27, 2017, ©. Leeham Co: In the last Corner, we began looking at the in-service operation of a Turbofan. We covered how thrust and fuel consumption varies in the different phases of an airliner’s mission.
Now we will dig a little deeper into how a mission will stress the engine’s different parts.
With this knowledge, we will later look at how operators make sure their engines are safe and in good operational condition over the 20 years life of an aircraft. Read more
January 20, 2017, ©. Leeham Co: We have now covered the technology around airliner turbofans. Now it’s time for the real stuff: their operational life. Most decisions that an engine designer does is about how the engine shall function in practice.
To understand a typical cycle of an airliner engine and the stresses it endures, we will follow an engine during a typical mission.
We chose a single aisle mission because most flights are with single aisle aircraft and the cycle these fly is the most stressful for an engine. Read more
December 16, 2016, ©. Leeham Co: After the turbine comes the engine’s exhaust system. This is where the thrust characteristics of the engine are formed. It is also the environment that defines the back pressure for the fan and turbines. It’s therefore more high-tech than one thinks.
For the very high bypass airliner engines of tomorrow, the common fixed bypass exhaust of today (Station 18 in Figure 1) will not be acceptable. Variable exhaust areas will have to be introduced.

Figure 1. GasTurb principal representation of a three shaft turbofan like our reference Rolls-Royce Trent XWB. Source: GasTurb.
On engines that function in high supersonic speed, it gets really complex. Not only is the exhaust area variable, it must have a dual variation exhaust, a so-called Con-Di nozzle.
December 08, 2016, ©. Leeham Co: We have now come to the turbine in our trip through a modern turbofan. The turbines make up the rear of the engine, before the propelling nozzle.
The turbines are the workhorses in the engine. They take the energy released by the fuel in the combustion chamber and convert it to shaft hp to drive the fan or compressors.

Figure 1. GasTurb principal representation of a three-shaft turbofan like our reference Rolls-Royce Trent XWB. Source: GasTurb.
The hotter they can operate, the better. They can then generate more hp on a smaller size turbine. The temperature of the gas entering the high pressure compressor is one of the key parameters of a gas turbine. It dictates the power efficiency of the core and how much work it can perform to drive the fan and the compressors. Read more
By Bjorn Fehrm
December 02, 2016, ©. Leeham Co: We will now look at the combustor area in our series on modern turbofan engines. There is a lot of activity in this area, as it sets the level of pollution for the air transportation industry for some important combustion products.
We will also finish off the compressor part of our series by looking at the bleeding of cooling air for the engine and for servicing the aircraft with air conditioning and deicing air.

Figure 1. GasTurb principal representation of a three-shaft turbofan like our reference Rolls-Royce Trent XWB. Source: GasTurb.
The amount of air which is tapped from compressor stages for cooling and other purposes can exceed 20% of the core flow (some of the flow paths are shown in Figure 1). At that level, it has a marked influence on the performance of the engine. Read more