11 March 2016, ©. Leeham Co: We covered a bit on flight testing some Corners ago and the fact that test pilots like to fly in direct Fly-By-Wire mode for initial evaluation of the aircraft. There’s a lot to say about how an aircraft is controlled. I have experienced the significant shift from mechanical flight controls to Fly-By-Wire (FBW).
For the pilot, things haven’t changed that much for normal flying with the introduction of FBW, but for the aircraft manufacturer it’s a dramatic change. It changes the way how one works to get an aircraft to fly nicely within its whole speed and altitude register (called the aircrafts flight envelope).
We will cover the reasons for the changeover to FBW for commercial aircraft and what this enables in a couple of Corners. We will start with how the classical mechanical flight control gradually got itself into more and more complication and how this was solved with FBW.
In a subsequent Corner, we will look at how FBW enable us to fly the aircraft differently. We can with the help of FBW implement more sophisticated flight control laws, aimed at helping the pilot to a safer flight.
4 March 2016, ©. Leeham Co: There is a saying, “There’s more than one way to skin a cat.” The same goes for making successful Turbofans to commercial aircraft.
At the recent Pacific Northwest Aerospace Alliance 2016 sub-supplier conference in Seattle, GE, Rolls-Royce and Pratt & Whitney all talked about their latest engine projects and the technology development that was critical to their success.
The engines they talked about, the GE9x, Rolls-Royce Advance and Pratt & Whitney’s Geared Turbofan, can all be characterised as the best of breed for their intended use but they could not be more different in how their level of excellence is achieved.
It made for interesting listening. Here’s the gist of what was told.
19 February 2016, ©. Leeham Co: Last week I described how Mitsubishi Aircraft Corporation (MAC) issued a press release on Christmas day communicating MAC would be doing structural reinforcements on their test airframes before continuing flight testing. MAC was perhaps overzealous when informing the world that they would do minor reinforcements to two ribs and a few stub spars in order to pass Ultimate strength tests for the aircraft.
I rightfully thought this is the Japanese culture at play; there must not be a big problem behind it.
There was one more area of that press release that intrigued me. Here what it said: “The first flight and the subsequent flight tests have confirmed the basic characteristics to be satisfactory. However, we also have recognized several issues as we attempt to accelerate our development.”
Time to decrypt this as well and compare to what has become standard industry practice.
19 February 2016, ©. Leeham Co: Mitsubishi Aircraft Corporation (MAC) announced on Christmas Day that they delayed the entry into service of the MRJ90 regional airliner by over a year. At the same time, they also announced that they had to reinforce the aircraft’s wing and fuselage.
The market’s reaction to the news was with disappointment. A further delay to a new aircraft from a new player in the market was not good news, but it was not that surprising. Bringing new aircraft to market on time is tough for the established players. Other new entrants, COMAC/AVIC and Irkut, are also running late with their programs, and Sukhoi was late with its SSJ100.
What worried many more was that the aircraft needed reinforcements, directly after its first flights. After only three flights, the aircraft was grounded and was scheduled for changes to its airframe. That was really bad news. “It’s going to be heavier.” How could MAC miss to gravely was the common reaction.
Having worked in a 50% Japanese company for many years, I wondered what was behind this all. Was the aircraft really in dire straits or did we witeness a cultural mismatch I’ve seen many times?
12 February 2016, ©. Leeham Co: Last week we looked at what could be done to the aircraft’s systems to increase the aircraft’s efficiency. But it does not stop with systems which can improve the aircrafts internal efficiency. Modern avionics and flight procedures can improve the efficiency of an airliner’s flight operation.
Ever since the Second World War, the navigation of civil airliners has been done by flying straight leg routes with the help of special ground-based radio beacons. The most elementary of these is the Non-Directional Beacon, NDB. It requires the pilot to read bearings to the beacon and is difficult to use.
A directional beacon called VOR, that went operational after WW2, changed the way that airliners could navigate (over large un-inhabited areas like the Atlantic or the Oceans, different low precision wide area navigation systems were used like LORAN). While the VOR was a big step forward, it still required navigation in straight leg routes between VORs, and this was not 100% efficient.
The development of powerful navigation computers (FMS) and the use of GPS is now changing this.
05 February 2016, © Leeham Co: In recent Corners, we looked into technologies which have made the new breed of airliners more efficient.
We’ve talked about how new engines can raise efficiency by about 15% and how aerodynamic improvements, like more efficient split winglets, can add another 1%-2% over single blade winglets. We have also looked into modern ways to manufacture the more resilient and lighter composites structures that designers want to use to increase aircraft efficiency.
There is one area which we have not covered: the aircraft’s systems and how these can be made more efficient. An improved system architecture can add the efficiency improvement of a split winglet. So let’s have a look at the trends in aircraft systems.
We start this week with power distribution.
15 January 2016, ©. Leeham Co: Last week we looked back on what happened in 2015 on the airframe front. We finish the retrospective by looking at what turbofan engine technology came to market in 2015. New engine technology is vital, as it is on the engine side that the quest for higher fuel efficiency has the largest successes.
While advances on the airframe side might bring an additional 5% per generation, the engines typically increase their efficiency per new generation with up to three times that value. Fuel efficiency per delivered thrust unit was improved with a whopping 15% over the engine it replaces for the Pratt & Whitney Geared Turbofan (PW GTF). It was certified for use on the Airbus A320neo in Q4 2015
The competing CFM LEAP-1A shall deliver the same improvement level to the A320neo once it is certified in the summer of this year. This engine has a smaller sister that started ground tests last year, the LEAP-1B, which is developed for the Boeing 737 MAX series.
The engine that is easily forgotten is the Rolls Royce Trent XWB. It entered service on the Airbus A350-900 during the year. It brings an improvement level of around 10% compared to the engines of the aircraft that the A350 replaces (Airbus A340/A330ceo and Boeing’s 777-200 range).